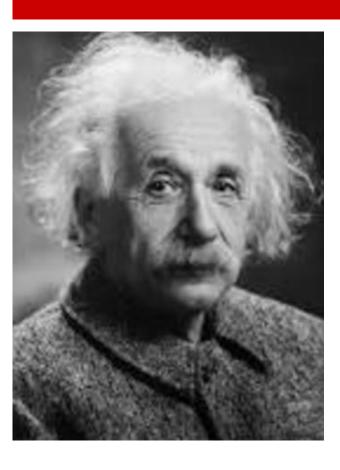




## Avoiding Type III Errors: Overcoming Competency Traps, Seizing New Opportunities

# Arun Rai Georgia State University

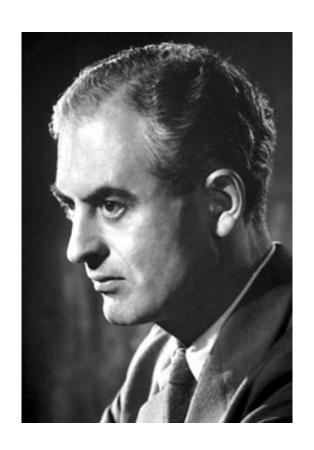
Presented at Workshop on Information Systems & Technologies December 17, 2018


### When Do Type III Errors Happen

A researcher answers the wrong question using the right methods

Mitroff, I. I., and Silvers, A. 2009. Dirty Rotten Strategies: How We Trick Ourselves and Others into Solving the Wrong Problems Precisely, Stanford, CA: Stanford University Press

**EDITOR'S COMMENTS** 


# Formulate the Research Problem So the Answer to the Question Will Matter



"The formulation of a problem is often more essential than its solution, which may be merely a matter of mathematical or experimental skill"

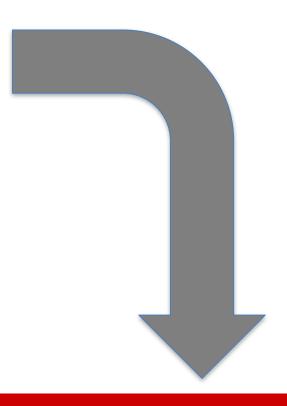
Albert Einstein

### Important Vs. Interesting Problems



Any scientist of any age who wants to make important discoveries must study important problems. Dull or piffling problems yield dull or piffling answers. It is not enough that a problem should be interesting almost any problem is interesting if it is studied in sufficient depth ... the problem must be such that it matters what the answer is whether to science generally or to mankind.

P.B. Medawar Nobel Laureate in Medicine and Physiology, 1979


## Types of Value that the Answer to the Research Question Can Create



- 1. Scholarly, advancing the area under study in fundamental ways that influence future progress
- 2. Practical utility, changing the state of affairs in the world
- **3. Aesthetics**, arising from powerful simplicity

H.A. Simon Nobel Laureate in Economic Sciences, 1978

Simon, H. A. 1991. "Random Thoughts on Methods of Research," Unpublished Manuscript, Carnegie Mellon University, Pittsburgh, PA. Formulate the Research Problem So the Answer to the Question Will Matter



Safeguard Against Key Risks in Formulating Research Problems

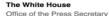
### First, The Streetlight Effect



Maintain focus on important problems, not easy-to-access datasets

### The Streetlight Effect Exacerbated By Easy-to-Access Data
















For Immediate Release

May 09, 2013

Executive Order -- Making Open and Machine Readable the New Default for Government Information

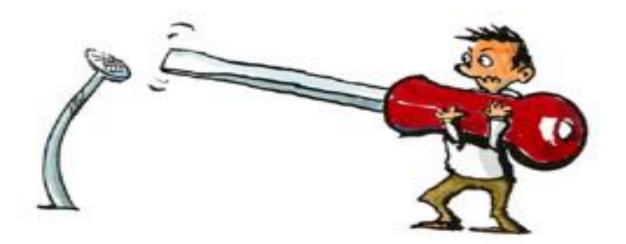
**EXECUTIVE ORDER** 

-----

MAKING OPEN AND MACHINE READABLE THE NEW DEFAULT FOR GOVERNMENT INFORMATION












### The Streetlight Effect: Exacerbated By Have-Hammer-Will-Travel

#### The Law of the Hammer



If the only tool you have is a hammer, everything looks like a nail.

Abraham Maslow - The Psychology of Science - 1966

### Second, Gap-Spotting and Gap-Patching— But Does the Gap Matter





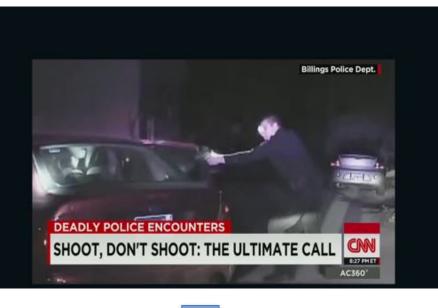
### Third, Affirming Gravity Works in My Kitchen

- Reifying well-established theories or models in a new context
- Concluding that the solution works in a different setting
- Straight-up applications of knowledge from another discipline

"Novelty is an essential component of contributions to science. No prizes are awarded for being second to discover a scientific law" (Simon 1991).

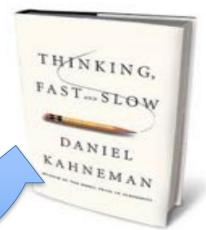
## Affirming Gravity Works in My Kitchen: Exacerbated by Chasing Novel Digital Contexts




Novelty of context in relation to the archetypal problem?

### Fourth, Missing the Forest for the Trees




**EDITOR'S COMMENTS** 

### **Transcend the Immediate Problem Context**



Connection
With
Archetypal
Problem?



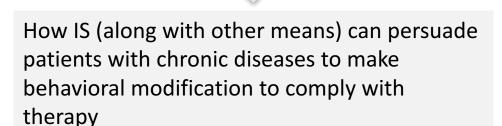


# **Key Risk: Myopic Problem Formulation, Overlooking the Archetypal Problem**

Sole focus on an immediate concrete problem without evaluating how it relates to archetypal problem

How IS (along with other means) can persuade individuals to modify behaviors to comply with a new set of behavioral norms necessary to attain goals

How IS (along with other means) can persuade patients with chronic diseases to make behavioral modification to comply with therapy




How intelligent wearable devices can persuade diabetic patients to make necessary behavioral changes to comply with therapy

## **Key Risk: Hyperopic Problem Formulation, Overlooking Distinctive Contextual Features**

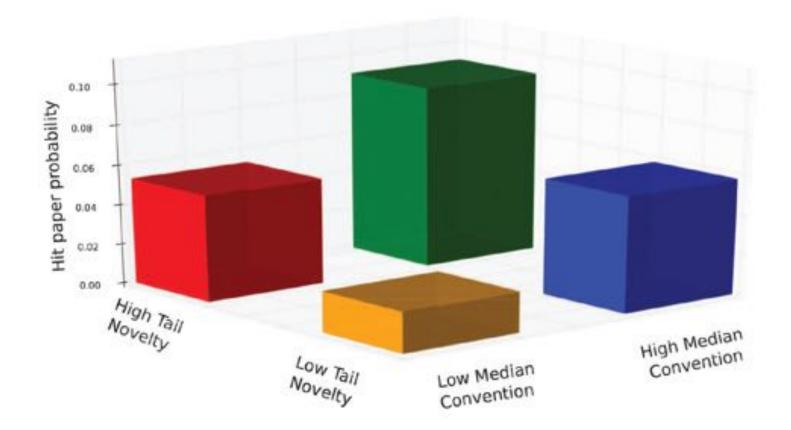
Sole focus on abstraction, without evaluating how distinctive contextual features challenge knowledge for archetypal problem

How IS (along with other means) can persuade individuals to modify behaviors to comply with a new set of behavioral norms necessary to attain goals





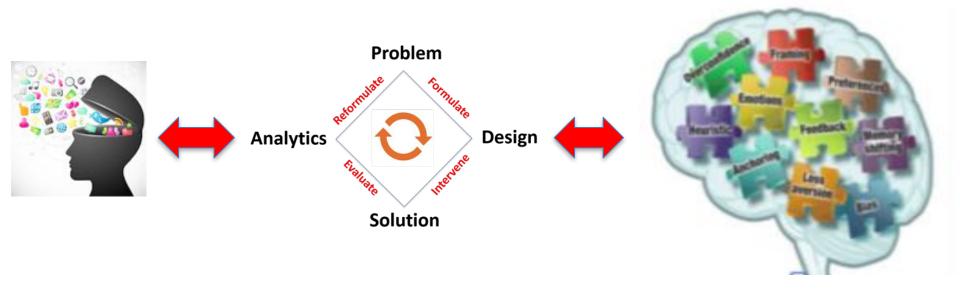
How intelligent wearable devices can persuade diabetic patients to make necessary behavioral changes to comply with therapy


# Managing the Risk of Over- or Under-Problematizing

How IS (along with other means) can persuade individuals to modify behaviors to comply with behavioral norms necessary to attain goals

How IS (along with other means) can persuade chronic-disease patients to modify behaviors to comply with therapy

How intelligent wearable devices can persuade diabetic patients to make necessary behavioral changes to comply with therapy

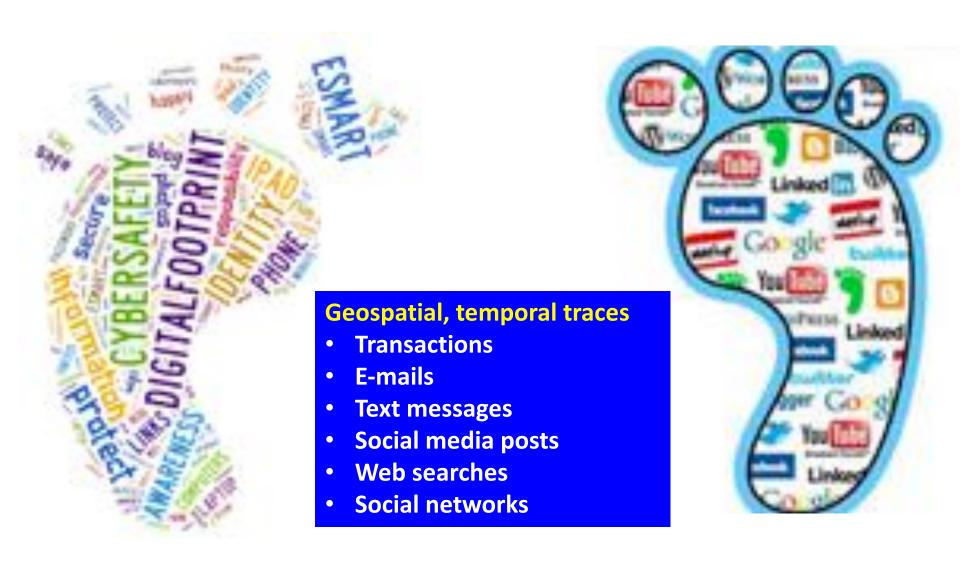

## Scholarly Impact: Connecting Novelty With Accreted Knowledge



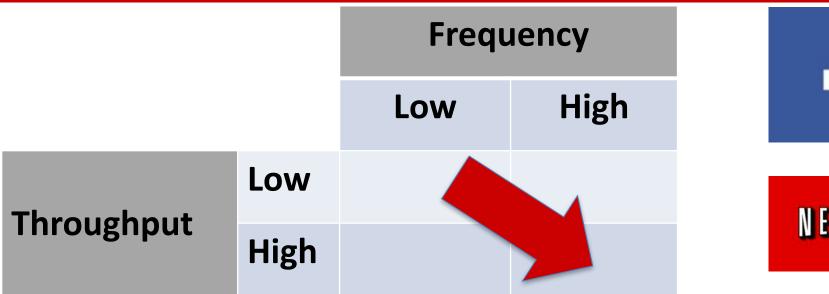
### Atypical Combinations and Scientific Impact

Science, 2013

### Fifth, Linear Process to Formulate and Solve Problems




- Diagnostic errors: 6- 17% of adverse events
- 28% of diagnostic errors due to cognitive errors that lead to premature closure


Source: jointcommission.org (October 2016)

Iteratively designing and evaluating solutions in context to mitigate premature closure

### Iterative Process to Formulate and Solve Problems: Leveraging Context-Aware Use Traces



### Iterative Process to Formulate and Solve Problems: Large-Scale Rapid Experimentation





- High throughput involving millions of subjects
- High frequency experimentation
- Parallel experiments
- Light-weight interventions
- Radical shift in hypotheses-to-conclusion scale and speed





# Formulate the Research Problem So the Answer to the Question Will Matter



Safeguard Against Key Risks in Formulating Research Problems

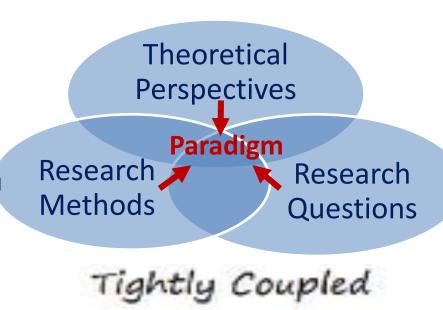


### **Overcoming Competency Traps**

## Rethinking Problem Formulation With Cross-Paradigm Combinative Practices





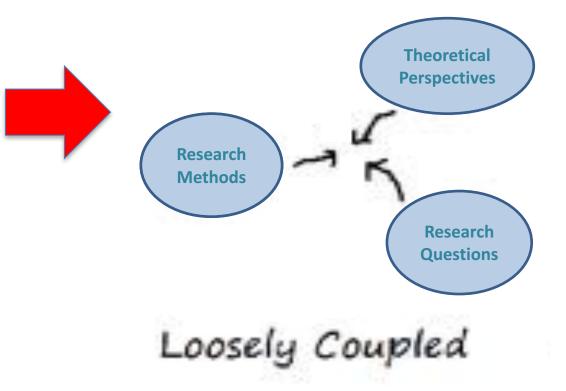

**EDITOR'S COMMENTS** 

Beyond Outdated Labels: The Blending of IS Research Traditions

### The Traditional Labels

### Tight coupling:

- Types of research questions
- Informing perspectives, reference disciplines
- Research methods
- Field mapped into few paradigms: behavioral, design science, economics, organizational
- Labels reflected domain of contribution and approaches




### **Breaking the Mold of Traditional Labels**

## Forces Propelling Diversity in Research

## Blending of Traditions: Era of Loose-Coupling

- Complexity/scope of IS phenomena
- Availability of new types of data and methods
- Diversity of research teams
- Training of scholars



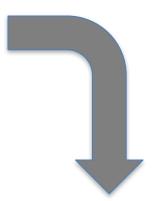
## What We Are Seeing: Old Labels Not Capturing New Genres

Behavioral economics combining behavioral and economics theories

Behavioral issues investigated using a combination of psychometrics, econometrics, network analysis, qualitative methods, and computational approaches

### "Not that Type of Design Science"

#### Loose-coupling of


- Problems that are addressed
- Types of artifacts that are designed and evaluated
- Search processes that are used to create and refine the IT artifacts to solve problems
- Types of knowledge contributions that are made



|                        |                            | Non-Paradigmatic Practices                                                                                                                                                                               |                                                                                                                                                                                   |
|------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |                            | Theoretical Perspective                                                                                                                                                                                  | Method                                                                                                                                                                            |
|                        |                            | Cross-Paradigm                                                                                                                                                                                           | Paradigmatic Theory-                                                                                                                                                              |
| Paradignatic Practices |                            | Theoretical Combination                                                                                                                                                                                  | Non-Paradigmatic Method<br>Combination                                                                                                                                            |
|                        | Theoretical<br>Perspective | Motivation: Challenge assumptions,<br>redefine boundary conditions, re-<br>conceptualize constructs and<br>relationships, and gain a more holistic<br>understanding through cross-paradigm<br>theorizing | Motivation: Develop, evaluate, and refine<br>a paradigmatic theory by applying a<br>method from another paradigm to<br>observe, analyze, and interpret<br>phenomena in novel ways |
|                        |                            | Paradigmatic Method-<br>Non-Paradigmatic Theory<br>Combination                                                                                                                                           | Cross-Paradigm<br>Methods Combination                                                                                                                                             |
|                        | Method                     | Motivation: Leverage a theoretical perspective from another paradigm to illuminate the application of a paradigmatic method in the research process                                                      | Motivation: Generate complementary insights by applying methods with different objectives, assumptions, data requirements, and processing approaches                              |

|                        |                            | Non-Paradigmatic Practices                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |                            | Theoretical Perspective                                                                                                                                                                                                                                                                | Method                                                                                                                                                                                                                                                                                                                                                                                            |
| Paradigmatic Practices | Theoretical<br>Perspective | Cross-Paradigm<br>Theoretical Combination                                                                                                                                                                                                                                              | Paradigmatic Theory-<br>Non-Paradigmatic Method<br>Combination                                                                                                                                                                                                                                                                                                                                    |
|                        |                            | Example: Behavioral and economics theories on influence mechanisms combined to understand how a platform's design affects the propagation of social influence in online networks                                                                                                       | Example: Behavioral/economics IS<br>theoretical perspectives combined with<br>computational methods such as topic<br>modeling, text mining, and image<br>recognition to develop measures of<br>constructs                                                                                                                                                                                         |
|                        | Method                     | Paradigmatic Method- Non-Paradigmatic Theory Combination  Example: IS design science research combined with behavioral theoretical perspectives on IS use to inform, evaluate, and refine artifact design; insights can also be used to revise the informing theoretical perspectives. | Cross-Paradigm Methods Combination  Example: Econometric analysis of archival data for causal identification combined with primary data collected using surveys or interviews to illuminate the underlying mechanisms; Grounded theory method to discover concepts and relationships combined with computational approaches applied to large corpus of text to discover topics and relationships. |

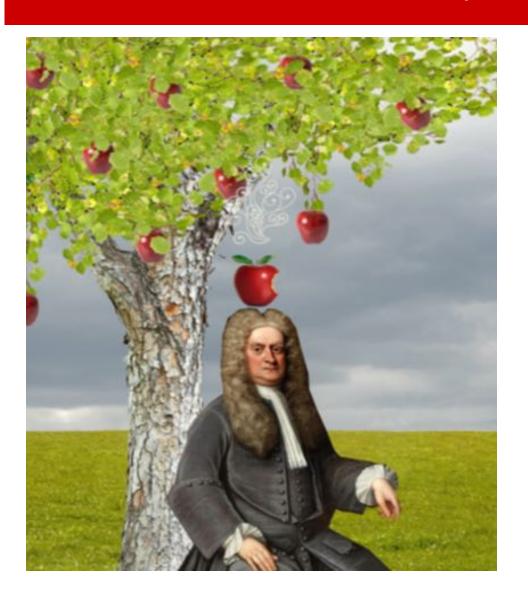
### Formulate the Research Problem So the Answer to the Question Will Matter




Safeguard Against Key Risks in Formulating Research Problems

**Overcoming Competency Traps** 

**Chance Favors the Connected Mind** 


### Role of Individual Preparedness



In the fields of observation chance favors only those minds which are prepared.

Louis Pasteur

### The Prepared Mind: Lone Genius, Suddenly Struck By Inspiration



# Eureka moment of sudden clarity!

Johnson, S. 2010. Where Good Ideas Come From: The Natural History of Innovation, New York: *Riverhead* Books, Penguin Group.

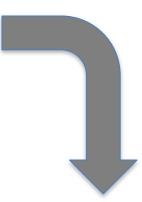
## The Connected Mind: The Utility of Liquid Networks



- Networked, collaborative
- Triggers, not search and retrieval
- Exaptation, not mutation

Johnson, S. 2010. Where Good Ideas Come From: The Natural History of Innovation, New York: *Riverhead* Books, Penguin Group.

### **Developing the Connected Mind**




Not merely a matter of constituting a team with members having complementary specializations in knowledge and skills, but requires "individual members of the team to become multidisciplinary in knowledge, if not skills" (Simon 1991, p. 10).

H.A. Simon Nobel Laureate in Economic Sciences, 1978

Simon, H. A. 1991. "Random Thoughts on Methods of Research," Unpublished Manuscript, Carnegie Mellon University, Pittsburgh, PA.

### Formulate the Research Problem So the Answer to the Question Will Matter



Safeguard Against Key Risks in Formulating Research Problems

**Overcoming Competency Traps** 

**Chance Favors the Connected Mind** 





## Avoiding Type III Errors: Overcoming Competency Traps, Seizing New Opportunities

# Arun Rai Georgia State University

Presented at Workshop on Information Systems & Technologies December 17, 2018